UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS

Ref: Complex Variables by James Ward Brown and Ruel V. Churchil

Dr. A. Lourdusamy M.Sc.,M.Phil.,B.Ed.,Ph.D.
Associate Professor
Department of Mathematics
St.Xavier's College(Autonomous)
Palayamkottai-627002.

41. UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS

Theorem
Let C denote a contour $\mathrm{z}=\mathrm{z}(\mathrm{t})(\mathrm{a} \leq \mathrm{t} \leq \mathrm{b})$. Let M be a non-negative
constant such that $|\mathrm{f}(\mathrm{z})| \leq \mathrm{M}$. Then $\left|\int_{C} f(z) d z\right| \leq \mathrm{M} \mathrm{L}$, where L is the
length of the contour.

Proof

We know that

$$
\left|\int_{C} f(z) d z\right|=\left|\int_{a}^{b}[z(t)] z^{\prime}(t) d t\right| \leq \int_{a}^{b}|f[z(t)]| z^{\prime}(t) \mid d t
$$

\therefore For any non-negative constant M such that the values of f on C satisfy the inequality $|\mathrm{f}(\mathrm{z})| \leq \mathrm{M}$.

$$
\therefore\left|\int_{C} f(z) d z\right| \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t
$$

\therefore The integral on the right here represents the length of L of the contour, it follows that the modulus of the value of the integral of f along C does not exceed ML.

$$
\therefore\left|\int_{C} f(z) d z\right| \leq \mathrm{ML}
$$

Example 1

Let C be the arc of the circle $|\mathrm{z}|=2$ from $\mathrm{z}=2$ to $\mathrm{z}=2 \mathrm{i}$ that lies in the
first quadrant prove that $\left\lvert\, \int_{C}^{z^{3}-1} \frac{z+4}{} d z \leq \frac{6 \pi}{7}\right.$

Solution

FIGURE 45

If z is a point on C , then $|\mathrm{z}|=2$.
Now $|z+4| \leq|z|+|4|=2+4=6$
Now $\left|z^{3}-1\right| \geq\left|\left|z^{3}\right|-|1|\right|=|8-1|=7$
$\Rightarrow \frac{1}{\left|z^{3}-1\right|} \leq \frac{1}{7}$

$$
\Rightarrow \frac{|z+4|}{\left|z^{3}-1\right|} \leq \frac{6}{7}
$$

We know that $\left|\int_{C} f(z) d z\right| \leq M L$
$\therefore\left|\int_{c} \frac{z+4}{z^{3}-1}\right| \mathrm{dz} \leq\left|\frac{\mathrm{z}+4}{\mathrm{z}^{3}-1}\right| \mathrm{L} \leq \frac{6}{7} \mathrm{~L}$
$\Rightarrow\left|\int_{C} \frac{z+4}{z^{3}-1}\right| d z \leq \frac{6 \pi}{7}$

Example 2 Given that C_{R} is the semicircular path $\mathrm{z}=\operatorname{Re}^{\mathrm{i} \theta}(0 \leq \theta \leq \pi)$ and $\mathrm{z}^{1 / 2}$ denotes the branch $\mathrm{z}^{1 / 2}=\sqrt{\mathrm{r}} \mathrm{e}^{\frac{\text { ii }}{2}}\left(\mathrm{r}>0,-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}\right)$ of the square root function. Without actually finding the value of the integral, show that $\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{\left(\frac{1}{2}\right)}}{z^{2}+1} d z=0$.

Solution

FIGURE 46

Given $|\mathrm{z}|=\mathrm{R}>1$.
Now, $\left|z^{\frac{1}{2}}\right|=\left|\sqrt{R} e^{\frac{i \theta}{2}}\right|$

$$
\begin{aligned}
& =|\sqrt{\mathrm{R}}|\left|\mathrm{e}^{\frac{\mathrm{i} \theta}{2}}\right| \\
& =\sqrt{\mathrm{R}}\left(\left|\cos \frac{\theta}{2}+\mathrm{i} \sin \frac{\theta}{2}\right|\right)
\end{aligned}
$$

$$
\begin{gathered}
=\sqrt{R}\left(\sqrt{\cos ^{2} \frac{\theta}{2}+i \sin ^{2} \frac{\theta}{2}}\right)=\sqrt{R} \\
\left|\mathrm{Z}^{2}+1\right| \geq\left|\mathrm{z}^{2}\right|-1 \mid=\mathrm{R}^{2}-1 . \\
\Rightarrow \frac{1}{\left|\mathrm{Z}^{2}+1\right|} \leq \frac{1}{\mathrm{R}^{2}-1}
\end{gathered}
$$

\therefore At points on $C_{R},\left|\frac{z^{\frac{1}{2}}}{z^{2}+1}\right| \leq \frac{\sqrt{R}}{R^{2}-1}=M$

The length of C_{R} is $\mathrm{L}=\pi \mathrm{R}$.

$$
\begin{aligned}
\therefore\left|\int_{\mathrm{C}} \frac{\mathrm{z}^{\frac{1}{2}}}{\mathrm{Z}^{2}+1} \mathrm{dz}\right| & \leq \mathrm{ML} \\
& =\frac{\sqrt{\mathrm{R}}}{\mathrm{R}^{2}-1} \pi \mathrm{R} \\
& =\frac{\sqrt{\mathrm{R}}}{\mathrm{R}^{2}-1} \pi \mathrm{R} \cdot \frac{1 / \mathrm{R}^{2}}{1 / \mathrm{R}^{2}}=\frac{\pi / \sqrt{\mathrm{R}}}{\left(1-\frac{1}{\mathrm{R}^{2}}\right)}
\end{aligned}
$$

$\therefore \lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{\left(\frac{1}{2}\right)}}{Z^{2}+1} d z=0$

